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The purpose of this paper is to answer the following 

questions:  (1) Let P be a family of sets . What are neces- 

sary and sufficient conditions that F be the family of all sets 
2 

represented in some consistent standard theory ? (2) What are 

necessary and sufficient conditions that F be the family of all 

sets represented in some consistent axiomatizable standard theory? 

I shall prove: 

THEOREM 1.  F is the family of all sets represented in some con- 

sistent standard theory if and only if F is closed under inter- 

section, finite addition and subtraction , and contains the null 

set and the "universal" set (i.e. the set Nn of all non-negative 

integers), 

THEOREM 2.  F is the family of all sets represented in some con- 

sistent axiomatizable standard theory if and only if F is a re- 
c 

cursively enumerable family of recursively enumerable sets ; F 

contains the null set and the "universal" set; and F is closed 

under intersection and finite addition and subtraction. 

As an example of a consequence of THEOREM 1, we may cite 

the fact that, since the TFL sets (the sets whose complements are 

recursively enumerable) satisfy the closure conditions mentioned 

in the theorem, there exists a theory T with the property that all 

and only Tu sets are represented in T.  Similarly, it follows from 

THEOREM 2. that, since the recursive sets satisfy the conditions 

given (that they form a recursively enumerable family in the sense 

on n.5 was first proved by Dekker), there exists an axiomatizable 

theory T with the property that all and only recursive sets are 



2 

represented in T. This result has been previously obtained by 

Shoenfield (in a stronger form); and the result about ft^ sets can 

likewise be obtained by a quite different construction than the 

one  used here.  However, it is of interest to see these results 

not as isolated curiosities, but as special cases of very general 

theorems. 

1.  General Remarks. fFi*P2,,"l wil1 be a famlly of sets 

which contains the null set, the "universal" set Nn, and is closed 

under intersection and finite addition and subtraction; P<,»Pp««*« 

will be an infinite list of monadic predicate letters; n will be 

the nth formal integer; T will be the theory whose axioms are 

n ^ m for each pair ntm  such that n ^ m; P.(n) for each i,n such 

that n e F.: and U)(P. (x)/. ..^P, (x).v#P., (x)j£.. ,/P. (x)) for 
i ij       iK      Ji       JN 

each pair iP., ,... *PiKj; s  \ P«i • • • »PJ \   of disjoint finite sets 

(K =1, N = 1) of predicate letters from the list P.,,P~,... ; 

A, ,AOJ...A  f- B will be used to mean (where n = 0) that there is 
1 £. n 

a proof of B from assumptions A,,A.-,,..,A in first order predicate 

calculus with identity; and f- mB will mean that B is a theorem 

(valid sentence) of T. 

2»  Proofs.  To prove Theorems 1 and 2 we need the following 

lemmas: 

LEMMA. 1: Let SF-,Fp,..A be the family of all sets represented in 

some consistent standard theory S.  Then F,,Fp,... is closed under 

intersection, finite addition, and finite subtraction, and contains 

the null set and the universal set. 

Proof: Closure under intersection is obvious, since if the w.f.f. 



(well formed formula) A(x) represents P. and B(x) represents P., 

then A(x) i  B(x) represents F. R F*.  The null set is represented 

by any self contradictory w.f.f with one free variable; the 

universal set is represented by any valid w.f.f. with one free 

variable; and finally the sets P. U jn,,np,... ,n, \    and 

P. - ]n,,np,... ,n,l are represented by the formulas 

A(x) vx = n.v ... vx = n, and A(x) £  x ^ n, j£. ,,j£x. fi  n. 

respectively. 

LEMMA Z:     P. represents P. in T. 

Proof:  If n € P., then P.(n) is an axiom of T, and hence "mP^n), 

Now suppose n € F., and consider the following interpretation of 

T: for all m, m designates n;  P. is assigned the universal set 

as extension for j ^ 1, and P. is assigned as its extension the 

set Nn - £n} • This interpretation is a true interpretation of T, 

and according to it the sentence P. (n) is false.  Hence P.(n) is 

not a theorem of T. 

LEMMA 3.  If TrnP, (x);£.../P. (x) D A(x), where M = 06 and A(x) is 
i 1-L        iM 

a w.f.f. with one free variable, then A(x) represents one of the 

P. in T. 

Proof:  (By course-of-values induction on M.) Suppose M = 0. 

Then [""rp^x)* hence A(x) represents Nn. 

Suppose the lemma holds for M < N, and let f" JFV, (x)j^. ..^P. (x) 

^A(x).  Let s,,Sp,...,sk be all of the formal integers that 

occur in A(x).  If A("t) is never provable unless LP. (t)/. ,.^P. (t) 

or t €  ^s, ,Sp,... ,s, V , then A(x) represents a set that can be 

obtained from F. 0 P, fl ... A P. by finite addition, and hence xl   *2       Hr 
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one  of the F..     Now suppose  that   hmA("t), where  it is not the  case 

that   H mP.   Ct)/£...^P.   ("t),   and t ^ s, .     Let  the  following be  all 

of the axioms needed for some proof of A(t)  in T: 

P.  (t),...,P.  (t); t ^ n^,... ,t £ n.; A^,...,Agi where the A.  are 

all of the axioms not containing t used in the proof.     If U • 0, 

then,  by the Deduction Theorem, A.,... ,A„ f-T ^ n,^, ..^t ^ n.3A(1;)j 

hence,   since t does not occur in A.. ,A?,,,. ,Ag,  and t is not  one of 

the  s±, A1,A^,...,AS|"- (x)(x ^ n1^...^x ^ n. O A(x)).    Then 

(-m(x)(x ^ n,j^. ..j^x f n. 3 A(x)), and A(x) represents Nn - W, 

where W has to be  a  subset  of  fn, ,...,n.l ,  and hence  finite.     On 

the  other hand,   if U •/=• 0,   then by a  similar argument 

A1,A2,...,AS[-(x)(P, (x)/£...^P    (x) Z3 (x ft nlJ^../fc J n\ ^ A(x)))» 

and so   f-TP,   (x}^...j^P.  (x) 3 (x ^ n^...^ £ n. ^A(x)).    But 

assumed   f- mP.   (x)j^. ..j^P,   (x)^A(x),   so 

(1)     hT(Pi   (x)jtf...jrfP,   (x)   .v.   P,   (x)/.../EP,   (x))r>(x^rL^ 
1       1 XN Jl Ju X 

. ..j&c ^ n. ^ A(x))   . 

If the  P.'s and the  P.'s are all distinct,  then 

hmUHF.   U)/.../£Pj   (x)   .v.   P.   (x)/.../P.   (x))j  and hence 
xl XN Jl JN 

h rpCx ^ 5-/«.,j& ^ n, 3 A(x))  and A(x)  represents Nn - w,  where 

W is a finite  set.    And if the  P.'s and the  P.'s are not all 

distinct,   then  P.   (x)jrf. ..P.   (x).v.P.   (x)^.../P.   (x)   is quanti- 
xl       XN      Jl        JU 

ficationally equivalent (in fact, equivalent by propositional 

calculus) to F (x)^.../P, (x) £  (P. (x)#>  (x)/...^P, ,n*(x) Kl        KH       xr    xr'        VD; 

.v. P. (x)^P, (x)^. ../P. fox(x)), where P. ,P, ,...,R  are all 



of the P's that occur both among the P. and among the P., while 
* J 

P. ,P.  ,P.  , ...,P, /D> are the P. that do not also occur among 

the P., and similarly P. ,P.  ,P,  ,...,P. (Q x are the P. that do 
J Js Js»  

Js"    Jsv^;        J 

not also occur among the P..  Moreover, D cannot =* 0 (otherwise 

"P. (t)j^...^P. (t), contrary to the choice of t), and we may 
1   11        XN 

assume that Q, ^  0 (since otherwise we would have U < N, and the 
n 

lemma would follow by the induction hypothesis )•  Thus 

(x)(P1 (x)f£.,.j£?±  (D)(x) .v. P. (x)^.../P. ^(x)) is an axiom of 

T, so that P. (x)/. ..^P, (x) .v. P. (x)^.,.^P, (x) is provably xl        H Jl        JU 
equivalent to P. (x)/..,^P, (x), where H < N. Hence the lemma 

Kl        ^H 

follows by the induction hypothesis and the fact that since (1) is 

a theorem of T, T T
p
k (x)j^. ,.^Pk (x)^> (x £ n^...^ X. t  ru 3 A(x))« 

LEMMA b,..     The family of all sets represented in an axiomatizable 

theory is a recursively enumerable family of recursively enumerable 

sets. 

Proof: Let the w.f.fs of S (where S is any axiomatizable theory) 

with one free variable be effectively listed as A,(x),Ap(x),.., • 

The predicate P(i,n) = afroA-(n) is a recursively enumerable 

predicate (to verify this, assuming Church's Thesis, note that it 

can be written in the form (Ex)Prf(x,n,i), where Prf(x,n,i) is the 

decidable, and hence recursive, predicate "x is the godel number 

of a proof of the formula that results when n is put for all oc- 

curences of »x> in A.(x)".  Moreover, A.(x) represents 4n|P(i,n)J , 

or {f(i)j (cf. n. 5), where8 f(i) = sj(e,i) and e is a godel 

number of P, 



Proof of THEOREM 1.  By LEMMA. 1, we have "only if".  To prove 

"if" (i.e., to show that the conditions given in the theorem are 

sufficient) we shall show that if fp,,Pp, ...1 satisfies the 

conditions, then |F, ,P„,.. ."I is the family of all sets represented 

in T (where T is the theory mentioned in §1) • 

By LEMMA. 2, P- is represented in T (for i = 1,2,...).  So it 

suffices to show that for every w.f.f. A(x) of T, A(x) represents 

one of the P.. Accordingly, let A(x) be a w.f.f. of T with x as 

its only free variable, and let "s, ,"sp,... ,"s, be all the formal 

integers that occur in A(x).  If ["rpA(t) only when tcis.jS^.. • tB\k» 

then A(x) represents a finite set, and hence one of the P. (noting 

that all finite sets can be obtained from the null set by finite 

addition).  Now suppose f" rrA(t) where t €  Is, ,Sp,... ,s/s .  Let 

the following be all of the axioms needed for some proof of A("t) 

in T:  P. (t),...,P. (t); T £  n-»#..,t £ n.J Alf,.,,Aqj where 

the A, are all of the axioms not containing "t used in the proof. 

Then A1,A^,.. ,,AS [ ?±  (tV...^ (¥)3(t ^ n±4. ..ft ^  n. 3 A(t))j 

hence A., ,A~,... ,A f P (X)^...J£P. (x)O (x = nnj^. .,^x =n.3A(x))j * *     S  H        XJJ x J 

and hence    " •P.   (x)j^...j^P.   (x) "D (x ^ n1^.. .j&c = n. ^ A(x))#     Then 
1  xi X

M -1 J 

by LEMMA 3*  x ^ n-j^...j£x fi n.OA(x)  represents one  of the P., 

and hence A(x)  represents one  of the P.(cf.  n,7)   . 

Proof of THEOREM 2.     The  proof is  similar to  the  proof of THEOREM 1, 

except that LEMMA ]\ must also be  used for the   "only if" part of the 

theorem,   and we must note  that what we  have  given for this  case   is 

a recursively enumerable   set  of axioms.     The  axiomatizability of T 

(in the  sense  of recursive axiomatizability)  then follows by 

Craig's Theorem. 



FOOTNOTES 

1) Terminology:  In this paper "set" means set of non-negative 

integers, except when there is indication to the contrary. A 

formula P(x) (with one free variable x) is said to "represent" a 

set S in a theory T if for all integers n, n e.  S if and only if 

P(n) is a theorem of T (N.B.it is not, required that P(n) should be 

refutable in T —- i.e., that ^•'P(n) should be provable in T —- 

when n £  S).  The term "represent" comes from Undecidable Theories, 

(n € S is an abbreviation for f^n  £ S. ) 

2.) By a "standard theory" I mean a "theory is standard formal- 

ization" in the sense in which that term is used in Undecidable 

Theories, in which there are terms (called formal integers in the 

sequel), say 0, 1, 2, ... (which may be interpreted as designating 

0, 1, 2, ...) such that n/i is provable for all n,m such that 

n £  m. 

3) A theory in standard formalization is called "axiomatizable" 

in Undecidable Theories if the set of valid sentences in identical 

with the set of first-order consequences of some recursive subset 

(called the set of "axioms").  (Instead of "recursive" it would 

be better to say "solvable", in the sense of Post, since strictly 

speaking the recursiveness of a set of formulas depends upon the 

godel numbering employed, whereas "solvability" is defined directly 

for sets of expressions in any finite alphabet.) 

ij.) A set B will be said to come from a set A by finite addition 

(resp. finite subtraction) if B = A U W (resp. A - W) where W is 

a finite set. 
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5) Following Kleene, let j n j be the nth partial recursive function 

in the standard enumeration.  (This notation is not to be confused 

with the notation-Tn| ... "I , for the set of all n satisfying the 

condition ..., nor with the notation $A-,Ap,A,,... 1 , for the set 

consisting of A.. ,Ap,A,,,.. . ) We shall identify each partial 

recursive function with its domain, for the purpose of enumerating 

the recursively enumerable sets: thus <n I will alternatively be 

thought of, where convenient, as "the nth recursively enumerable 

set, in the standard enumeration." A family P is called a 

"recursively enumerable family of recursively enumerable sets" 

if the members of P are vt(0)j , £t(lK , ... , for some general 

recursive function t. 

6) If M = 0, the Z> is to be understood as deleted. 

7) More precisely, it would follow from the induction hypothesis 

that x ^ n,j^...x ^ n."^A(x) represents one of the P..  But 

x £ n-.jL...£yL fi  n. A(x) represents a superset with at most finitely 

many more members than the set represented by A(x) (as is clear 

from the fact that this formula can also be written 

x = n. vx = n2v... vx = n. v A(;t) can be obtained from this 

P. by finite subtraction.  Hence A(x) also represents one of the 

P.  (since the P. are closed under finite subtraction). 

8) S,(e,i) is a primitive recursive function whose value for any 

e,i) is a Godel number of jx|P (i,x)j , where P is the eth 2- 

place recursively enumerable predicate in the standard enumeration. 

This function is constructed in Introduction to Metamathematios. 
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